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Abstract
The magneto-elastic phase diagram in one-dimensional systems relating to the interplay
between magnetism and lattice distortion is studied in a double-exchange and super-exchange
model considering classical localized spins and the limit of large Hund’s coupling. At low
super-exchange interaction energy, a phase transition occurs between electron-full
ferromagnetic distorted and electron-empty antiferromagnetic undistorted phases via phase
separation. In this case, all electrons and lattice distortions are found within the ferromagnetic
domain. For higher super-exchange interaction energy, phase separations consisting of two- or
three-site distorted independent magnetic polarons separated by electron-empty undistorted
antiferromagnetic links are obtained. In this regime, each polaron contains an electron, leading
to a Wigner crystallization. The lattice distortion and charge distribution inside the polarons are
also calculated.

1. Introduction

The physics of transition-metal oxides has revealed a variety
of phenomena in the last few decades [1, 2]. Among
those phenomena, colossal magnetoresistance (CMR) has
attracted great interest, not only as a challenging subject of
fundamental science but also as an important phenomenon
for potential spintronic applications. Typically, the materials
that present this phenomenon have a perovskite type lattice
structure and display a broad spectrum of physical properties
depending on the filling, temperature and other parameters.
Theoretical studies are widely based on the so-called double-
exchange (DE) model introduced by Zener [3, 4] to explain
the ferromagnetism of manganites. The origin of the DE
mechanism lies in the intra-atomic Hund’s spin coupling JH

between itinerant and localized electrons. This mechanism
has been widely used in the context of manganites [3–7].
The key point is that this coupling implies that the hopping
depends on the configuration of the neighbor spins and
explains how carriers improve their kinetic energy by
forcing the localized spins to become ferromagnetically
ordered. This ferromagnetic (F) tendency is expected to
be frustrated by antiferromagnetic (AF) super-exchange (SE)
interactions between localized spins �Si as first discussed by

de Gennes [8] who conjectured the existence of canted states.
Since then, it has become clear that microstructured spin
configurations exist rather than macroscopic canted states
resulting from such competition. Naturally, the strength
of the magnetic interactions depends significantly on the
conduction band filling. At low electron density, ferromagnetic
polarons have been found for localized S = 1/2 quantum
spins [9, 10]. ‘Island’ phases, periodic arrangements of
F polarons coupled antiferromagnetically, have been clearly
identified at commensurate fillings both for quantum spins in
one dimension [11, 12] and for classical spins in one (1D) [13]
and two dimensions (2D) [14]. Phase separation between
hole-undoped antiferromagnetic and hole-rich ferromagnetic
domains has been obtained in the ferromagnetic Kondo
model [15, 16]. Phase separation and small ferromagnetic
polarons have also been identified for localized S = 3/2
quantum spins [17]. Recently, a unifying picture in 1D
for classical local spins has shown the existence of two-and
three-site ferromagnetic polarons separated by AF links over
the whole range of electron density [18, 19]. As a result
of the spin dependent hopping, carriers are localized in the
ferromagnetic bonds, giving rise to bond ordered states for
commensurate fillings. In turn, this will induce significant
lattice distortions in systems in which the electrons interact
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with the lattice by affecting the hopping amplitude as in the Su–
Schrieffer–Heeger (SSH) model [20, 21]. This point implies
an important connection between the magnetic structure and
lattice distortions. Up to now, in spite of its simplicity,
this magneto-elastic effect has attracted very little attention,
although it might be particularly important in one-dimensional
and quasi-one-dimensional materials, such as halogen bridged
metal chains, conjugated polymers, ladders and a variety of
charge-transfer salts [22]. Recently, Vallejo et al [23–25]
have shown that three-leg ladders in the oxyborate system
Fe3BO5 may provide evidence for the interplay between the
magnetic structure and the observed structural and charge
ordering transition, such that long and short bonds on the rungs
alternate along the ladder axis [26]. For Fe ludwigite, x-ray
diffraction studies show contraction of the rungs [27].

The main goal of this work is to study the interplay
between magnetic interactions and lattice distortion in one-
dimensional systems. We consider the SSH model for the
electron–lattice coupling together with the double-exchange
and super-exchange model. It is important to note the
difference from the electron–lattice coupling usually taken for
manganites, which arises from the Jahn–Teller splitting of the
doubly degenerate levels [28, 29]. As in [18] we will determine
the phase diagram as a function of the band filling and the
super-exchange interaction energy, and we will examine the
effect of including coupling with the lattice.

2. The model and basic trends

We consider the DE–SE Hamiltonian for describing the
localized and itinerant electrons:

HDE−SE = −
∑

i,σ

ti,i+1(c
†
i,σ ci+1,σ + h.c.) − JH

∑

i

�Si · �σi

+ J
∑

i

�Si · �Si+1, (1)

where c†
iσ (ciσ ) are the fermion creation (annihilation)

operators for conduction electrons at site i and spin σ , ti,i+1 =
t is the nearest-neighbor (n.n.) hopping parameter and JH is
Hund’s intra-atomic exchange coupling between the spin of
conduction �σi and localized �Si spins. The first two terms
represent the DE contribution favoring F ordering of local
spins whose robustness depends on the number of conduction
electrons per site x . The last term is a SE coupling between
n.n. localized spins �Si , J being an AF interaction energy which
stabilizes an AF phase for x = 0 and competes with DE for
intermediate fillings.

Finally, we introduce the effect of bond deformation on
the itinerant electrons. In the SSH model, the complicated
inter-atomic potential is represented using the electron–lattice
coupling constant gt � ∂ t/∂y (gt < 0) which describes the
change of the hopping amplitude under a small change of the
n.n. bond length y:

He−l = gt

∑

i,σ

yi,i+1(c
†
iσ ci+1,σ + h.c.) + Kt

2

∑

i

y2
i,i+1, (2)

where yi,i+1 is the change of the i, i + 1 lattice distance. It
is important to mention that the original equilibrium lattice

spacing a0 (and so also t) in the absence of He−l results
from the bonding produced by all other electrons in the
system except the itinerant ones that we are considering
in (1). The elastic constant Kt refers to this equilibrium
lattice. Conduction electrons give an additional bonding
which manifests itself in a contraction of the lattice �L =∑N−1

i yi,i+1 � 0.
The electron–lattice part may be written in the following

standard form, introducing the dimensionless parameters for
the deformation δi,i+1 = gt yi,i+1/t and the usual coupling
constant λ = 2g2

t /π t Kt :

He−l = −t
∑

i,σ

δi,i+1(c
†
i,σ ci+1,σ + h.c.) + t

πλ

∑

i

δ2
i,i+1. (3)

The hopping term changes as ti,i+1 = t (1 + δi,i+1) with
|δi,i+1| � 1. The total Hamiltonian is

H = −t
∑

i,σ

(
1 + δi,i+1

)
(c†

iσ ci+1,σ + h.c.) − JH

∑

i

�Si · �σi

+ J
∑

i

�Si · �Si+1 + t

πλ

∑

i

δ2
i,i+1. (4)

The DE simplifies in the strong coupling limit [7, 30] JH →
∞, a limit commonly called the DE model. We will
consider the local spins as classical �Si → ∞, a reasonable
approximation in many cases in view of the similarity of the
known results [11, 12, 15, 16]. So, the DE part takes the
well-known form − ∑

i ti,i+1 cos( θi,i+1

2 )(c†
i ci+1 + h.c.) and the

complete Hamiltonian is given by

H = −t
∑

i

(
1 + δi,i+1

)
cos

(
θi,i+1

2

)
(c†

i ci+1 + h.c.)

+ J S2
∑

i

cos
(
θi,i+1

) + B
∑

i

δ2
i,i+1, (5)

where B/t = 1/πλ. The itinerant electrons being now either
parallel or antiparallel to the local spins are thus spinless. θi,i+1

(0 � θi,i+1 � π ) is the relative angle between the classical
localized spins at sites i and i + 1 which are specified by their
polar angles φi , ϕi defined with respect to a z-axis taken as the
spin quantization axis of the itinerant electrons. In the case of
quantum spins we should consider that the hopping amplitude
depends on the n.n. spin configuration through the spin–spin
correlation.

The correlation between the magnetic structure and lattice
deformations is transparent in (5); due to the dependence
of the hopping amplitude on the spin configuration, the
contribution of the itinerant electrons to the metallic bonding
varies with the magnetic state and so will the resulting lattice
spacing. In a single bond with one electron, if the local spins
are ferromagnetic, the bonding is that of a simple diatomic
molecule with hopping t ; the bonding energy is just −t (1+δ0)

resulting in δ0 = t/2B and bond contraction. In contrast, if the
configuration is AF (te = 0), the electron becomes localized
and does not produce either additional bonding (δ = 0) or
length change.

In the thermodynamic limit within an homogeneous F
phase (δi,i+1 = δu , θi,i+1 = 0) the energy is written as

E = −2t (1 + δu)

π
sin πx + Bδ2

u + J S2, (6)

2
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Figure 1. Magneto-elastic phase diagram as a function of the SE
interaction energy J S2/t and the conduction electron density x , for a
typical value of the elastic energy B/t = 30. The dotted line in this
diagram is a guide to the eyes. The different phases are described in
the text.

which gives δu = (t/π B) sin πx = λ sin πx ; δu > 0
means a contraction of the lattice. How the bond length is
affected results from the electron–lattice coupling parameter
gt , yi,i+1 = (t/gt)δi,i+1. The cohesive energy E as
a function of the band filling is similar to the Friedel
model which gives a qualitatively correct prediction of the
trends in transition metals (see for example [31]). In
general, in addition to the homogeneous δu , a staggered
Peierls distortion δs is also expected in such one-dimensional
systems.

The same effect will occur in other homogeneous phases,
like a paramagnetic phase for example. In that case, the
effective hopping results from averaging over all the possible
values of θi,i+1, te = t〈cos( θi,i+1

2 )〉 = 2
3 t and the lattice

contraction will be smaller than in the ferromagnetic case.
On the other hand, in an AF phase the lattice spacing
remains unchanged: a = a0. Clearly, through lattice
distortions clear distinctions can be made between F and AF
regions, particularly interesting when there exist magnetically
microstructured phases, as are found resulting from the
competition between DE and SE [18, 19, 23].

This magneto-elastic effect also exists, although it is
smaller, in the local quantum S = 1/2 spin case. For large
JH > 0, the Hund term stabilizes a S = 1 triplet state
when a conduction electron is on that site, so hopping takes
place within this state. In a F state, all local electrons have,
let us say, mS = 1/2, so an electron hops from a site with
mS = +1 to a site where it will produce also mS = +1 and
the hopping remains equal to t . In an AF bond the hopping is
between a site with mS = +1 and a site with mS = 0, and
is equal to t/

√
2, smaller than for a F bond. Therefore, the

classical spin limit enhances the lattice change between F and
AF bonds.

Figure 2. EFD phase for eight electrons (x = 1/3) and
J S2/t = 0.04 showing: (a) (δi,i+1 ) and (b) angles (θi,i+1) and charge
distribution (ni ). Solid lines represent the thermodynamic limit.
A partial spin configuration snapshot is also shown.

3. Numerical results and discussion

The phase diagram for the model given by (5) is obtained as a
function of the conduction electron density x (0 � x � 0.5
because of hole–electron symmetry) and the SE interaction
energy J . T = 0 K and open boundary conditions on a linear
chain of N = 24 sites were used. N −1 angles θi,i+1 and N −1
values of δi,i+1 had to be optimized. For this goal, classical
Monte Carlo simulations are used, energies being obtained
by numerical diagonalization of Hamiltonian (5). In general,
this allows a simple description of the phases in terms of a
small number of variables, making possible an analytical study
which confirms the phase boundaries obtained numerically.
The Z -eigenvalues of the Hamiltonian (5) can be calculated
using the following determinant:

det

⎛
⎜⎜⎜⎜⎜⎝

−Z h1,2 0 · · · 0
h2,1 −Z h2,3 · · · 0

0 h3,2 −Z
. . .

...
...

. . .
. . . hN−1,N

0 0 hN,N−1 −Z

⎞
⎟⎟⎟⎟⎟⎠

= 0, (7)

3
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Figure 3. EFD phase for ten electrons (x = 0.417) and
J S2/t = 0.04, showing the same as figure 2.

where hi+1,i = hi,i+1 = −t (1 + δi,i+1) cos( θi,i+1

2 ). The total
energy U can be obtained as

U = EKin + EMag + EElas, (8)

where

EKin =
εF∑

i=1

Zi ,

EMag = J S2
N−1∑

i=1

cos
(
θi,i+1

)

and

EElas = B
N−1∑

i=1

δ2
i,i+1.

Here εF is Fermi’s energy.
In figure 1 we present results for B/t = 30 which

correspond to the very weak coupling limit λ ≈ 0.01, to
guarantee small δi,i+1 and also small displacements of all
the atoms. However, systems in which the bonding is more
important, with larger λ, could also be envisaged.

At first sight, the results look like the magnetic-only phase
diagram without lattice distortion, δi,i+1 = 0 (B/t → ∞),
studied recently [18, 19]. The microstructured magnetic phases
involved are basically the same, but with inhomogeneous

Figure 4. EFD phase for twelve electrons (x = 0.5) and
J S2/t = 0.04, showing the same as figure 2.

lattice distortions. As expected, the AF links are always
undistorted.

First, there is the region where the ground state is F, as
shown in figures 2–4 for different electronic densities x = 1/3,
x = 5/12, x = 1/2 and J S2/t = 0.04. In these figures we
show angles θi,i+1, lattice distortion δi,i+1, charge distribution
ni and a partial spin configuration snapshot through the system.
Solid lines represent the homogeneous thermodynamic limit
values δu and ni = x . The oscillating departures from
these values are due to finite size effects resulting from open
boundary conditions. For larger system sizes we recovered
the homogeneous δu in the center of the finite system. As
mentioned above, a Peierls type distortion δs should also be
observed; however it is negligibly small for the very weak
coupling situation that we present here. At lower densities,
between the AF phase at x = 0 and the F phase, we find a phase
separation consisting of a large distorted F region containing all
the electrons (EFD) within an AF undistorted phase without
electrons (EAFU) as shown in figure 5. In this figure, solid
lines also represent the thermodynamic limit δu for the electron
density inside EFD (x = 2/9 in this case) and ni = x . The
optimized solution proposed gives θi,i+1 = 0 and π exactly for
the ferromagnetic and antiferromagnetic domains respectively.
In this case, the open boundary conditions apply due to the

4
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Figure 5. EAFU + EFD phase separation for four electrons
(x = 0.167) and J S2/t = 0.04 showing: (a) δi,i+1 and (b) angles and
charge distribution. A partial spin configuration snapshot is also
shown.

AF links, explaining the inhomogeneous distribution. In this
regime of low J , a phase separation (F + AF; for the magnetic
case only) has been reported in two dimensions [32], in one
dimension using classical localized spins and JH = 8 [33]
and in the one-dimensional ferromagnetic Kondo model [34].
We should mention that, in this limit, our results differ from
those of Koshibae et al [13] within the ‘spin-induced Peierls
instability’ mechanism.

When J S2/t increases (J S2/t � 0.12), small
independent magnetic polarons appear; in these cases an
analytical solution can be obtained since the 24 × 24 matrix
is indeed a 3 × 3 block matrix. So, the analytical solution can
be easily achieved by solving these 3 × 3 matrices [35].

For the commensurate filling x = 1/2, above the EFD
phase, with increasing J S2/t , we recover the P2 phase (θi = 0
inside the polaron) and then the CP2 phase (canted P2, θi = θ )
consisting of two-site polarons coupled antiferromagnetically
but distorted. Each polaron traps one electron. These phases
are labeled DP2 and DCP2; DP2 (with δ0 = t/2B) is
shown in figure 6. In the DCP2 phase the two spins are
canted and accordingly δi is smaller than in DP2. Similarly
the DP3 phase with three-site distorted polarons coupled
antiferromagnetically (θ1 = θ2 = 0, δ1 = δ2 = δp)

Figure 6. DP2 phase at x = 0.5 showing (a) δi,i+1 and (b) angles and
charge distribution. The partial spin configuration snapshot is also
shown.

is obtained for x = 1/3 (figure 7) which transforms into
DCP3 (distorted canted P3) at larger J S2/t . One important
effect of the electron–lattice coupling is that the continuous
degeneracy of the angles θ1 and θ2 previously found for the
CP3 phase [18, 19] is now broken [36]. The three-site polarons
with one electron are independent and their energy is

E/t = −
√

(1 + δ1)2 cos2
θ1

2
+ (1 + δ2)2 cos2

θ2

2

+ J S2

t
(cos θ1 + cos θ2) + B

t
(δ2

1 + δ2
2). (9)

In the absence of lattice distortion we obtain the minimum
energy state for cos θ1 + cos θ2 = 1

8(J S2/t)2 − 2. However, with
lattice distortion we get the following succession of phases
(see figure 1). First we find the DP3 phase (θ1 = θ2 = 0,
δ1 = δ2 = δp = t/2

√
2B inside each polaron); see figure 7.

DP3 transforms into a partially canted DCP3 phase in which
one bond only is canted. In this phase one angle remains zero
and the other one is finite θ2 = θ until this angle θ2 reaches
π (we have then DP2 + one AF bond). Finally the other
bond becomes canted (θ1 = θ , θ2 = π ; indeed DCP2 + one
AF bond) ↑↑↑ (P3) −→↑↑↗−→↑↑↓−→↖↗↙. DP3
becomes DCP3 for intermediate SE interaction energy 0.179 �
J S2/t � 0.245. DP2 is stable in a small range above
J S2/t � 0.245. DP2 becomes DCP2 for J S2/t � 0.254.
In the region above EFD and EAFU + EFD phases and for

5
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Figure 7. DP3 phase at x = 1/3, showing the same in figure 6.

J S2/t � 0.245, we find different phases for x < 1/3 and
1/3 < x < 1/2. For 0 < x � 1/3 and J S2/t � 0.179,
we can observe EAFU + DP3 phase separation (figure 8)
consisting of DP3 polarons immersed in an AF background.
This transforms into EAFU + DCP3 for J S2/t � 0.179 as
DP3 becomes DCP3. EAFU + DP3 and EAFU + DCP3 phase
separations are degenerate with phases where the polarons can
be ordered or not, while keeping the number of F and AF
bonds fixed; phases obtained within the ‘spin-induced Peierls
instability’ [13] belong to this class. For x > 1/3, the T
phase is a more general complex distorted phase found by
the Monte Carlo method and can be polaronic like or not.
The expected DCP3 + DP2 phase separation is obtained for
0.179 � J S2/t � 0.245. A phase DP3 + DP2 is found in a
very narrow region between T and DCP3 + DP2.

For strong SE interactions J S2/t � 0.245, we obtain
EAFU + DP2 (only in the narrow range corresponding to the
stability of DP2 for x = 1/3) and EAFU + DCP2 over the
whole range of electronic concentration. As we have seen,
these two-site polaron states are stabilized by the coupling
with the lattice. In the absence of distortions they belong to
all the possible degenerate states. Figure 9 shows the EAFU
+DP2 phase separation for the case of four electrons and
J S2/t = 0.25. Two-and three-site polarons always show
bond contractions yi,i+1, therefore producing small magneto-
elastic polarons. The overall lattice contraction �L =∑N−1

i yi,i+1 = (t/gt)
∑N−1

i δi,i+1 for the different phases is
shown in figure 10 in units of t/gt . In figure 11, we present the

Figure 8. EAFU + DP3 phase for four electrons (x = 0.167) and
J S2/t = 0.14, showing the same as figure 6.

total energy U/Nt as a function of the electronic conduction
density for different values of the super-exchange interaction
energy. As expected, �L and U/Nt varies linearly with x
within phase separated regions as indicated by the straight
lines in these figures. In DP2, DCP2, DP3 and DCP3 phases
each polaron traps a single electron, so forming a Wigner
crystallization. As for the EAFU + DP3 and EAFU + DCP3
phase separations, all the phases involving DP2, DCP2, DP3
and DCP3 polarons are degenerate with respect to their
position, ordered or not, while keeping the number of F and
AF bonds fixed. The former degeneracy unifies ideas like
phase separation and individual polarons and gives a natural
response to the instability at the Fermi energy and to an infinite
compressibility as well.

4. Summary

We have studied the rich phase diagram resulting from the
interplay between magnetic interactions and lattice distortion
within an exchange model in one-dimensional systems
using large Hund’s coupling and classical localized spins.
Basically, microstructured phases with small ferromagnetic
polarons result from the double-exchange and super-exchange
interaction. Our results for low SE interaction energy show
phase separation between ferromagnetic and antiferromagnetic

6
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Figure 9. EAFU + DP2 phase for four electrons (x = 0.167) and
J S2/t = 0.25, showing the same as figure 6.

Figure 10. Lattice contraction �L in units of t/gt as a function of
the electronic conduction density x for different values of the
super-exchange interaction energy J S2/t . Dashed lines are guides to
the eyes.

phases. In this case, the ferromagnetic domain contains all
the electrons and a lattice contraction occurs only within
this domain. For larger SE interaction energy, we found
phase separations involving small two-and three-site distorted
polarons, in which a Wigner crystallization can be identified.
The important magneto-elastic effect obtained here leads to

Figure 11. Total energy U/Nt as a function of the electronic
conduction density x for typical values of the super-exchange
interaction energy J S2/t . Solid lines represent phase separation
energies and dashed lines are guides to the eyes.

local bond contractions that consequently change the lattice
parameters which should be observable. We expect this effect
to occur in low-dimensional systems in which magnetic ions
coupled via a double-exchange type interaction are present, for
example molecular magnets, halogen bridged metal chains and
charge-transfer salts. Ladders in the ludwigite family seem to
be good candidates also.
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